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ABSTRACT: In laser-induced breakdown spectroscopy (LIBS), a series of powerful laser pulses are directed at a surface to form
microplasmas from which light is collected and spectrally analyzed to identify the surface material. In most cases, no sample
preparation is needed, and results can be automated and made available within seconds to minutes. Advances in LIBS spectral
data analysis using multivariate regression techniques have led to the ability to detect organic chemicals in complex matrices such
as foods. Here, the use of LIBS to differentiate samples contaminated with aldrin, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin,
chlorpyrifos, and dieldrin in the complex matrices of tissue fats and rendering oils is described. The pesticide concentrations in
the samples ranged from 0.005 to 0.1 μg/g. All samples were successfully differentiated from each other and from control
samples. Sample concentrations could also be differentiated for all of the pesticides and the dioxin included in this study. The
results presented here provide first proof-of-principle data for the ability to create LIBS-based instrumentation for the rapid
analysis of pesticide and dioxin contamination in tissue fat and rendered oils.

KEYWORDS: pesticides, dioxins, LIBS, multivariate regression, tissue fats, rendering oils

■ INTRODUCTION

Dioxins are persistent environmental pollutants that accumulate
in the food chain, mainly in the fatty tissue of animals.1 They
belong to a group of dangerous chemicals known as persistent
organic pollutants and are of concern because of their high
toxicity.2 Prevention or reduction of human exposure is best
accomplished by strict control of industrial processes to reduce
formation of dioxins and by careful screening of materials coming
into the food manufacturing process.1 Both aldrin and dieldrin
are organochlorine pesticides, with dieldrin being a byproduct of
aldrin.3 Dieldrin has been used in the past to control locusts and
mosquitoes, as a wood preservative, and for termite control.
Aldrin quickly breaks down to dieldrin both in the body and in
the environment. Dieldrin is bioaccumlative, it does not break
down easily in the environment, and it becomes more concen-
trated as it moves up the food chain to humans and wildlife. Due
to concerns about potential damage to the environment and
human health, all uses of aldrin and dieldrin have been banned in
the United States. Dieldrin can still be found in the environment,
however, and screening for both pesticides in materials coming
into the food supply is very important.3 Chlorpyrifos is a broad-
spectrum chlorinated organophosphate (OP) insecticide,
acaricide, and nematicide. Chlorpyrifos is used on agricultural
food and feed crops, cattle ear tags, golf course turf, and vehicles,
in on-structural wood treatments including processed woods,
and in industrial plants. The mode of action of chlorpyrifos is
similar for both target and nontarget organisms. It kills insects
upon contact by affecting the normal function of the nervous
system by inhibiting the breakdown of acetylcholine (Ach).4 All
four of these chemicals, 1,2,3,4,6,7,8-heptachlorodibenzo-p-
dioxin (HPCDD), aldrin, dieldrin, and chlorpyrifos are difficult
to detect in poultry adipose fat and rendered oils because these
samples require laborious sample preparation and matrix inter-
ferences may complicate analysis.

In laser-induced breakdown spectroscopy (LIBS), a laser spark
is focused onto a sample to vaporize and excite microgram to
nanogram amounts of material and generate a microplasma, or
laser spark. Light from the spark is collected (typically with a fiber
optic) and passed through a spectrometer to produce a spectrum
that is recorded. The spectrum represents a combination of
spectral signals from the bulk sample, surface material, and the
atmosphere surrounding the sample. Because the microplasma is
formed by focused light, typically no sample preparation is
required. LIBS is an analysis technique that has been in use since
the early 1960s and is an outgrowth of atomic emission spec-
troscopy ca. 1860 in which samples were placed in a flame for
analysis and the colors observed were used for analysis.5 Ob-
servation that a continuous spectrum was produced by the laser
plasma was first made in 1962, and discussion of analysis using a
laser was first published in 1963.6 Since then, characteristics of
the laser spark have been well studied, and LIBS has progressed
from being a novelty to being a proven analysis technology. LIBS
analysis has been applied across a broad range of applications that
include, but are not limited to, industrial processing; environ-
mental monitoring; coal analysis; sorting of metals and plastics;
cultural heritage studies; detection of toxic metals in liquids;
explosive, biological, and chemical detection; rock and soil analysis;
aerosol, water, and soil analysis; and detection of trace elements in
fresh vegetables and food powders.6−9 There is even a LIBS in-
strument operating on the surface of Mars (ChemCam 2012).
Most of the above-mentioned applications rely on analysis of
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elemental emission lines observed in the LIBS spectra. More
recently, advanced chemometric10 or other analysis techniques
have been applied to LIBS spectra for both classification and
identification of various materials in addition to traditional
elemental analysis.
The use of LIBS to differentiate pesticide-contaminated

samples was first demonstrated by Kim et al.11 Using pellets
made from powdered spinach and rice flour, the ability to
differentiate samples contaminated with parathion was demon-
strated. Parathion is a chemical used in the farming of fruits,
wheat, and vegetables but is banned in several countries because
of its toxicity. In this first study, extensive sample preparation was
applied to create the pellets used for LIBS data collection, and
multivariate regression analysis (PLS-DA) was applied to specific
multiple emission lines to achieve sample differentiation.
The goal of this work is to evaluate the use of LIBS to detect

organic contaminants in complex foodmatrices such as tissue fats
and rendering oils. The contaminants used were HPCDD and
the pesticides aldrin, dieldrin, and chlorpyrifos. In our work, a
simpler analysis approach, requiring essentially no sample pre-
paration, is used to differentiate pesticide- and dioxin-contaminated
fat tissue and rendered oil samples from uncontaminated samples
with 100% accuracy.

■ MATERIAL AND METHODS
To differentiate pesticide- and dioxin-contaminated fat tissue and rendered
oil samples from uncontaminated samples with 100% accuracy, an analysis
method published previously by the authors to differentiate pathogens and
viruses12,13 using chemometric models combined in a predictive flow14 is
employed. By applying this method of analysis, it is possible to differentiate
the unprepared pesticide-contaminated samples to much lower contam-
ination levels than previously published.
It should be noted that multivariate analysis (either using the full

spectrum or a subset of the spectrum as is the case when multiple
emission lines are identified and used) of LIBS spectra does not
demonstrate absolute detection of the detection target as the LIBS
spectrum observed is always the combined signals arising from the

experimental sampling conditions (laser energy, lens-to-sample
distance, mass of material ablated and excited, etc.), characteristics of
the sample being interrogated, and the atmosphere surrounding the
sample. What is demonstrated is the ability to differentially identify
samples from within a predefined set of samples (contaminant + matrix)
for defined experimental sampling conditions. Such analysis is useful for
developing LIBS instruments for specific applications in which sampling
conditions can be fixed and in which the samples to be differentiated can
be characterized and the natural sample variability captured in the
detection algorithm. In terms of this study, the specific algorithms
created are applicable only to the same equipment configuration that
was used to collect the data used to build the algorithm and only to
detection in the matrices of hexane, tissue fats, and rendered oils.
However, the detection algorithm development methodology for a
different equipment configuration would be the same.

The samples used in this study were prepared by Diversified
Laboratories and included one dioxin (1,2,3,4,6,7,8-heptachlorodiben-
zo-p-dioxin from Accustandard) and three pesticides (all from
Chemservice): aldrin, dieldrin, and chlorpyrifos. The samples were
mixed with rendered tissue fat from poultry and rendered oils. The
samples were spiked at five target concentration levels: 0.10, 0.05, 0.03,
0.01, and 0.005 μg/g. Sample concentrations were verified independently

Table 1. Pesticide and Dioxin Samples Diluted in Hexane,
Applied to Glass Slides, and Dried Prior to LIBS Analysis

slide sample in hexane concentration (μg/g)

1 hexane NA
2 blank slide NA
3 aldrin 0.103
4 aldrin 0.052
5 aldrin 0.031
6 aldrin 0.010
7 aldrin 0.005
8 dieldrin 0.104
9 dieldrin 0.052
10 dieldrin 0.031
11 dieldrin 0.010
12 dieldrin 0.005
13 chlorpyrifos 0.101
14 chlorpyrifos 0.050
15 chlorpyrifos 0.030
16 chlorpyrifos 0.010
17 chlorpyrifos 0.005
18 HPCDD 0.100
19 HPCDD 0.050
20 HPCDD 0.030
21 HPCDD 0.010
22 HPCDD 0.005

Table 2. Pesticide and Dioxin Samples Diluted in Tissue Fat
and Rendered Oil and Applied to Filter Paper Just Prior to
LIBS Analysis

sample in
hexane

concentration in tissue fat
(μg/g)

concentration in rendered oil
(μg/g)

hexane NA NA
aldrin 0.120 0.095
aldrin 0.052 0.055
aldrin 0.029 0.024
aldrin 0.010 0.017
aldrin 0.006 0.009
dieldrin 0.063 0.103
dieldrin 0.040 0.054
dieldrin 0.021 0.040
dieldrin 0.010 0.007
dieldrin 0.005 0.007
chlorpyrifos 0.072 0.120
chlorpyrifos 0.044 0.101
chlorpyrifos 0.0.027 0.072
chlorpyrifos 0.009 0.049
chlorpyrifos 0.004 0.050
HPCDD 0.090 0.981
HPCDD 0.045 0.433
HPCDD 0.054 0.291
HPCDD 0.018 0.101
HPCDD 0.011 0.060

Figure 1. Experimental setup used to collect LIBS spectra. The samples
were located inside a carbon-filtered hood. LIBS emission was collected
along the path of the laser light to remove parallax.
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using an Agilent 6890N GC-μECD equipped with an autosampler
(Gentech Scientific, Arcade, NY, USA). The columns used were Restek
Rtx-CLPesticides and Rtx-CLPesticides2, which consist of a proprietary
Crossbond phase, and each column has a different film thickness (0.5 vs
0.42 μm). Operating temperatures (°C) were as follows: column oven,
140; detectors, 330; injection port, 250 (see Tables 1 and 2 for measured

sample concentrations from the GC-μECD measurements). To within
the error of measurement, the concentration of the samples matched the
target concentrations, and all discussion will use these values. The tissue
fat and rendered oil samples were prepared in serial dilutions using
hexane (pesticide quality or equivalent) as the dilution solvent as
follows: Approximately 1.0 g of each sample was weighed into a 1 dram

Figure 2. Illustration of the process used to create the differential models used to build a detection algorithm. Example spectra are shown on the left. On
the right are (top) the three-dimensional score space plot for the resulting model and (bottom) the prediction values obtained for spectra reserved for
testing the model.

Figure 3. Algorithm flows for the differentiation of pesticides and dioxin in hexane dried on slides (left) and in tissue fat applied to filter paper (not
dried).
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Figure 4. Plots of the prediction values obtained for the models used to differentiate the pesticides and dioxin in tissue fat. Sample name appended
with a “1” = 0.1 μg/g sample; a “05” = 0.05 μg/g sample; a “03” = 0.03 μg/g sample; a “01” = 0.01 μg/g sample; and a “005” = 0.005 μg/g
sample.
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vial using a Mettler analytical balance (Mettler Toledo, Columbus, OH,
USA). The appropriate amount of standard solution was added, and the
weight was brought to 2.00 g with the oil. Afterward, the samples
were vortexed for 15 s and placed in vials to be shipped for LIBS analysis.
The samples were applied to Whatman filter paper just prior to LIBS
interrogation. A sample set of the same dilutions in hexane and dried on
slides was also prepared as a first step in this investigation for pesticide
and dioxin detection in a simple matrix. Dilutions of hexane (with no
pesticide and dioxin) in tissue fat and rendered oils were also prepared

and included as control samples to demonstrate that differentiation of
the pesticide or dioxin could be separated from the differentiation of the
dilution matrix.

The experimental setup used for LIBS data collection is illustrated
in Figure 1. Laser pulses (1064 nm, 20 mJ/pulse, 10 Hz) from a
Q-switched Nd:YAG laser (model CFR 400, Big Sky Laser, Bozeman,
MT, USA) were focused onto a sample mounted either horizontally (for
pesticide in hexane samples dried on slides) or vertically (for pesticide in
tissue fat or rendered oil applied to filters). Plasma light was collected
using an off-axis parabolic mirror and fiber optic and then routed to a
spectrometer (model AvaSpec-2048-2-USB2 dual channel fiber optic
spectrometer, Avantes, Broomfield, CO, USA). A hole in the parabolic
mirror permitted the optical path of the laser pulses and light collection
to be collinear, eliminating parallax. The sample was positioned inside a
carbon-filtered hood and moved by a motorized translation stage during
data collection such that a fresh spot was presented to each spark. Each
recorded spectrum represented the accumulation of 10 spectra (camera
acquisition parameters: 1 μs delay, 1.1 ms window). A total of 100
spectra were collected from each sample for analysis. This study
included three separate data collections: (1) pesticides in hexane dried
on glass slides to demonstrate proof-of-principle for the differentiation
of pesticide and dioxin samples in a relatively simple matrix; (2)
pesticides and dioxin samples in a more complex matrix of tissue fat
applied to filter paper (no drying); and (3) pesticides and dioxin samples
in the very complex matrix of rendered oils applied to filter paper
(no drying). Spectra collected from each of these data collections were
analyzed separately to see if a detection algorithm could be created to
differentiate both sample type and sample concentration.

The method of analysis used in this study was to build mathematical
models to differentiate samples or groups of samples included in the
analysis and then use these models in a predictive flow that relies on
sequential screening.14 The differentiation models are based on single-
variable partial least-squares regression combined with principal
component analysis. This technique is commonly referred to as PLS
and is especially useful when trying to predict a set of dependent
variables from a very large set of independent variables. In PLS analysis it
is assumed that all of the measured variance is useful variance to be
explained. The latent variables are estimated as exact linear
combinations of the observed measures to create an exact definition
of component scores. Through an iterative estimation technique, a
general model is developed that encompasses canonical correlation,
redundancy analysis, multiple regression, multivariate analysis of
variance, and principal components. The iterative algorithm consists

Figure 5. Algorithm flow for the differentiation of the pesticides and
dioxin in rendered oil. Rendered oils from two different sources were
included in the analysis.

Figure 6.Differentiation model created for the detection of aldrin in rendered oil did not include the dioxin and the second oil in the modeling and is still
able to differentiate the aldrin sample from the HPCDD sample in the second oil. Sample name appended with a “1” = 0.1 μg/g sample; a “05” = 0.05 μg/g
sample; a “03” = 0.03 μg/g sample; a “01” = 0.01 μg/g sample; and a “005” = 0.005 μg/g sample.
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Figure 7. Two models were required to prevent misidentification of chlorpyrifos as a rendered oil (A) and chlorpyrifos sample as dieldrin (B). Sample
name appended with a “1” = 0.1 μg/g sample; a “05” = 0.05 μg/g sample; a “03” = 0.03 μg/g sample; a “01” = 0.01 μg/g sample; and a “005” = 0.005 μg/g
sample.
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of a series of ordinary squares analyses. No distributional form is
assumed for the measured variables. PLS1, used in this analysis, is a PLS
method in which only one variable is modeled. Once a model has been
generated for the sample classes, it can be used on test samples to
produce a predictor value (in this case between 0 and 10) to be used to
match the input tested sample to one of the sample classes. For this
analysis, the dependent variable is the sample and the independent
variables associated with the sample are the intensity measurements at
each wavelength. Commercially available software (The Unscrambler,
Camo Software Inc.) was used for analysis, and spectral normalization
(the maximum peak value within each spectrumwas equal to 1 following
the normalization) was applied to all spectra prior to building models.
For the modeling of all samples, the entire observed wavelength range
was used as the variable set with the measured intensity treated as the
values of the variables. Because the entire spectral range was used, the
modeling was done over 4096 variables (spectrometer channels) for
each sample (spectrometer channel 1, 232−494 nm, 0.32 nm resolution;
spectrometer channel 2, 495−1026 nm, 0.6 nm resolution).
For each group of samples to be differentiated, models were created

using 50 of the 100 spectra collected for each sample and then tested
using the remaining 50 spectra reserved for the evaluation of model
performance. When a spectrum was input into a differentiation model,
the model produced a “prediction value” that indicated how well the
input sample was matched to the two sample groups used to build the
model. Good discrimination models were considered to be those that
resulted in a wide enough separation of the prediction values for the two
groups that a value in the prediction value gap could be chosen for which
input samples with higher prediction values would be considered
matched to the sample being discriminated. Samples with prediction
values lower than this chosen prediction value would be considered
matched to the samples not being discriminated. Figure 2 illustrates this
process. As shown in the figure, the best models are those for which
there is a wide separation in the prediction values obtained from the
model for the two sample groups being differentiated when test spectra
are input. To improve the observed separation, prediction values
obtained were averaged (typically 50, but less in some cases when fewer
spectra were available for testing the model performance). Once a good
model (a model that differentiated a sample group from the remaining
samples) was created, the model was placed in the algorithm flow, the
sample group was removed from the differentiation, and the process was
repeated until a model could be created to differentiate another sample
group. This process was repeated until all sample groups were identified
to create the finalized detection algorithm.
To study the ability to create detection algorithms to differentiate

concentration, two approaches were applied. One approach was to
build detection algorithms based on differential analysis against
concentration within a sample group as described above. The other
approach was to apply regression modeling against concentration to
create a single model to predict sample concentration as opposed to
creating an algorithm using multiple models for sequential differ-
entiation of concentration.

■ RESULTS AND DISCUSSION
Using the analysis method described above and grouping
samples by type regardless of concentration for the modeling, a
detection algorithm could be created for the differentiation of the
pesticides and dioxin at all concentrations in all matrices studied.
Figure 3 shows the algorithm structure for the differentiation of
pesticides in hexane dried on slides and for the differentiation in
tissue fats applied to filter paper just prior to analysis (not dried).
The algorithms created for these two different matrices have
similar structure: first the uncontaminated matrix material is
differentiated, next is the dilution medium, and third are the
samples contaminated with aldrin. At this point, the two algorithms
differ in differentiation structure, with HPCDD being the next
easiest to differentiate in the hexane samples and dieldrin being
the next easiest to differentiate in tissue fats. In both hexane
and tissue fat, chlorpyrifos is one of the pesticides hardest to

differentiate as can be seen from its positioning in the detection
flow. The differentiation performance of the models used in both
detection algorithms, as measured by the results obtained when
the models were run on the verification spectra, were similar. See
Figure 4 for the prediction values obtained for the test spectra
when input into the models used to differentiate the pesticides
and dioxin in tissue fat. The prediction value used to separate
the different samples is indicated by the horizontal black line
and arrow.
Differentiation in the rendered oil matrix required a more

complicated analysis structure with multiple models needed for
two of the differentiation groups (see Figure 5). For this analysis,
rendered oils from two different sources were included to further
demonstrate detection capability in a matrix for which com-
position varies and is relatively unknown. The pesticide samples
were diluted in rendered oil 1 (oil 191424), and the dioxin
sample was diluted in rendered oil 2 (oil 19113). Both un-
contaminated oils were differentiated in the flow to verify the
detection was due to the presence of the pesticide or dioxin
rather than a difference in the rendered oil composition. For
detection in rendered oils, aldrin-contaminated samples were the
easiest to differentiate, and this differentiation is the first step in
the detection algorithm. It should be noted that the aldrin
differentiation model was created without including the HPCDD
and oil 2 samples in the modeling and is still able to differentiate
the aldrin sample from both (see Figure 6). Once the aldrin
sample group was removed from the analysis, the process was
repeated, and it was found that the next easiest to differentiate
sample group was the uncontaminated oil group. However, to
successfully differentiate this group, two models were required to
successfully identity this group without misidentifying the
highest concentration chlorpyrifos sample group as a rendered
oil (see Figure 7A). Uncontaminated rendered oils were then
removed from the analysis, the process was repeated, and it was

Figure 8. Algorithm flow for the differentiation of the aldrin
concentration in rendered oil.
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Figure 9. Plots of the prediction values obtained for the models used to differentiate the aldrin concentrations in rendered oil. Sample name appended
with a “1” = 0.1 μg/g sample; a “05” = 0.05 μg/g sample; a “03” = 0.03 μg/g sample; a “01” = 0.01 μg/g sample; and a “005” = 0.005 μg/g
sample.
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found that the next easiest to differentiate groups were the
HPCDD sample group followed by the hexane sample group. To
differentiate the dieldrin sample group from the chlorpyrifos
sample group, two models were also needed to ensure the lowest
concentration chlorpyrifos sample was not misidentified as dieldrin
(see Figure 7B). As was found in the previous two differentiation
algorithms for detection in hexane and tissue fat, the chlorpyrifos
sample group is again one of the hardest to differentiate of those
studied.
Differentiation of sample concentration using the methods

described above was applied to each pesticide and dioxin sample
group for all of the matrices studied, and it was found that all
samples could be differentiated by concentration for all cases.
Figure 8 shows the algorithm flow for differentiating aldrin
concentration in rendered oils. Figure 9 shows the results when
this algorithm was run on the verification spectra not included in
the modeling used to create the detection algorithm. To further
investigate the ability to differentiate sample concentration, a
regression analysis of prediction value against concentration was
performed using the differentiation results for pesticide and
dioxin concentrations in fat tissue and rendered oils. In many
cases, a strong relationship was found to exist between con-
centration and the prediction value. Figure 10 shows the results
obtained using verification spectra for aldrin in fat tissue and in
rendered oil. A good relationship exists for aldrin in rendered oil
with an R2 value of 0.85, whereas the relationship for aldrin in fat
tissue is not well-defined. Additional work is needed to verify that a
reliable relationship exists between prediction value and concen-
tration and to establish that the prediction value can be used as an
indicator for pesticide and dioxin concentration.

The results of this study show that LIBS has demonstrated
potential as a diagnostic for the rapid detection of pesticides and
dioxins (seconds to minutes) in complex matrices such as tissue
fats and rendered oils with practically no sample preparation.
Both type and concentration of the pesticide were determined
using the new methods of analysis described herein. Detection
algorithms are tailored to the application and are developed for a
specified set of matrices and targeted species, but the method of
detection algorithm development as described is independent of
the application and the detection targets.
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